
Design and Comparative Evaluation of GPU and
Tez based ECU Architectures for Secure, Dependable, and
Real-Time Automotive CPS

 Copyright © 2021 VividSparks IT Solutions Pvt. Ltd.

Introduction
Contemporary automobiles integrate a multitude of heterogeneous digital processors (also called electronic control
units (ECUs)), radio interfaces, in-vehicle networks and protocols, and hundreds of megabytes of complex embed-
ded software. Next generation of automobiles (also known as cybercars) will further escalate the profusion of novel
distributed control applications. Emergence of x-by-wire systems, where electronic controllers replace traditional
mechanical and/or hydraulic subsystems, is a prominent example of recent modernization in the automotive indus-
try. However, x-by-wire systems (e.g., steer-by-wire, brake-by-wire, etc.) have stringent real-time performance and
reliability requirements, which pose significant challenges for implementation over traditional, bandwidth limited
controller area network (CAN). Since CAN is the most prevalent protocol for in-vehicle communication and most of
the car manufacturers are reluctant to adopt a completely new protocol, CAN with flexible data rate (CAN FD) is a
viable replacement of CAN for x-by-wire applications. Furthermore, FlexRay is another recent protocol that is well
suited for x-by-wire applications as the protocol offers high speed data transfer and fault tolerance features.

As electronic components permeate into safety-critical automotive functions, integration of security and depend-
ability in cybercar design becomes imperative. The continuously escalating complexity of automotive systems and
increasing integration with wireless entities (e.g., smart phones) exacerbate the security vulnerabilities of cybercars
([1]). Furthermore, harsh operational environment combined with external noise and radiation render ECUs vulnera-
ble to permanent and transient faults. Hence, in order to make cybercars robust to faults and security vulnerabilities,
cybercars must incorporate dependability and security features. When retrofitting the in-vehicle architectures with
security and dependability mechanisms, a prime challenge is to ensure that hard real-time constraints of
the automotive cyber-physical applications are not violated.

The evolving nature of cyber-attacks presents another challenge in integrating security primitives in automotive
cyber physical systems (CPS). The advancements in cryptanalysis and attack technologies might render various
security mechanisms ineffective. Most of the global initiatives on future automotive CPS focus on design of dedicat-
ed security solutions that could be embedded in future automotive ECUs.

To address the above mentioned security, dependability, and performance challenges in automotive CPS design, we
devise multicore Tez based ECU architectures which are secure, dependable, high-performance, energy-efficient, and
flexible. We consider the interplay between temporal performance and dependability in our ECU designs. We empha-
size that although temporal performance (measuring timing constraints) is a quality of service (QoS) measure, the
temporal performance must also be considered as a dependability measure beyond a certain critical threshold as
the driver can totally lose control of his/her vehicle if the response time exceeds that critical threshold.

To demonstrate temporal performance, energy efficiency, and error resilience of our proposed architectures, we
consider steer-by-wire (SBW) as a case study. We further compare the performance and energy efficiency of our
proposed ECU architectures with a GPU that embodies the security and dependability features for future cybercars.

1

 Copyright © 2021 VividSparks IT Solutions Pvt. Ltd.

Tez based ECU Architecture
Cybercars integrate a multitude of microcomputer units as ECUs to implement different automotive functions. auto-
motive ECUs require high computational power to integrate newly emerging cybercar applications and services. Tez
is flexible and scalable ECU architectures that simultaneously integrate security and dependability primitives with low
resources and energy overhead.

Figure. 1 shows the generalized internal architecture of the Tez-based ECU. The ECU consists of an 32 multicore
CPU in a grid and application-specific coprocessors. This application processor provides interface to the in-vehicle
networks (e.g., CAN, CAN FD, FlexRay, LIN, MOST, etc.), external sensors, other ECUs, and gateways. Furthermore, this
application processor executes control algorithms, performs data aggregation from various sensors, and outsources
computationally intensive applications to the application-specific co-processors. The application-specific coprocessor
performs compute-intensive applications like image, audio, and video processing. The application-specific co-proces-
sor is POSIT based digital signal processor (DSP), that carries out asymmetric and symmetric cryptographic

21

Figure 1: Tez based ECU architecture

Security: The cryptographic module with AES-128 encryption and SHA-3-based HMAC are implemented in Tez based
co-processor. It process a a batch of eight 128-bit messages at once, we adopt this batch processing mechanism to
utilize the massive computational power of Tez and to enhance the throughput of the cryptographic module. Fur-
thermore, the implementation in Tez exploits the largely byte-parallel operations of AES-128 and lane-parallel opera-
tions of SHA-3. Our implementation adopts parallel granularity of byte-per thread for AES-128. Each byte of AES-128
is mapped to a thread in Tez. A thread-block with number of threads equals to warp size of 32 is used to compute a
complete AES-128 encryption/decryption. All threads in one warp are executed in a single instruction multiple data
(SIMD) fashion. For SHA-3, parallel granularity of 8-byte (a lane) per thread is used. A thread-block with 32 threads

operations, or Viterbi processor for the realization of maximum-likelihood decoding of convolution codes, etc. The
application processor and co-processor communicates via advanced system bus (ASB) or advanced high perfor-
mance bus (AHB). The application processor of one ECU can communicate with the application processor of another
ECU through in-vehicle networks (e.g., CAN, CAN FD, or FlexRay). During normal operation, the application processor
collects data from the sensors. If this data is to be sent to another ECU, the application processor first sends the data
to the coprocessor through PCIe bus.

is used to compute complete SHA-3-based HMAC. Furthermore, frequently accessed S-boxes, round constants, and
other index constants used in AES-128 and SHA-3 are stored on the on-chip shared memory of Tez to ensure fast
memory access.

Dependability: Each thread-block, and its redundant counterpart, performs a complete AES (or HMAC) computation.
In the FT-RMT mode, ECU messages are processed using 32 GPGPU thread-blocks: sixteen of these thread-blocks
are used for AES-128 and sixteen are used for HMAC computation. In each group of 16 threadblocks, eight are
master thread-blocks and eight are redundant thread-blocks. Each master and redundant thread-block pair pro-
cesses one ECU message. The results obtained from the master and its redundant thread-block are compared to
detect computational errors. The thread-blocks must be synchronized to compare the results. The synchronization
is carried out by employing a CPU synchronization technique. If computational errors (soft errors) are detected, then
recomputation is conducted. In addition to error resilience, the fault tolerance provides resistance against the fault
attacks that tries to inject soft-errors in the operating ECUs.

3

 Copyright © 2021 VividSparks IT Solutions Pvt. Ltd.

B. Timing Model of SBW to Compute the QoS and Behavioral Reliability

The end-to-end delay/response time (τr) is the delay between the driver’s request at the HW and the corresponding
response at the front axle actuator (FAA). τr is regarded as a QoS metric but can also be interpreted as a dependabil-
ity metric that impacts automotive safety and reliability if it exceeds a critical threshold value τmax

r, which is deter-
mined by automotive original equipment manufacturers (OEMs). Furthermore, the probability that the worst-case
response time is less than the critical threshold is termed as behavioral reliability. In the following, we analytically
model the response time for the SBW subsystem and error resilience of our FT approaches.

Response time (τr) is modeled as the sum of pure delay (σp), mechatronic delay (σm), and sensing delay (σs), as,
τr= σp+ σm+ σs. The mechatronic delay is introduced by the actuators (electric motor in our case). The sensing delay
is the delay during the interaction of application processor of ECU with the sensors. The sensing and mechatronic
delays are bounded by a constant value of 3:5ms [3]. For our secure and dependable approach, the pure delay (σp)
includes ECUs’ computational delay for processing the control algorithm (depends on the execution time of applica-
tion processor), computational delay for processing the incorporated security and dependability primitives (depends
on the execution time of the co-processor), and transmission delay including bus arbitration (depends on the type of
in-vehicle network used like CAN or CAN FD). Mathematically, pure delay (σp) for our FAC function can be written as,

 (1)

where and denote the computation time at HWECU1 and FAA-ECU1, respectively; σbus represents the transmis-
sion time for a message on an in-vehicle bus (CAN, CAN FD, or FlexRay) from HW-ECU1 to FAA-ECU1; rcc1 and
rcc2 represent the number of recomputations that are needed to be done at HW-ECU1 and FAA-ECU1, respectively,
to rectify soft errors; rtc represents the number of retransmissions required for an error-free transmission of a se-
cure message over in-vehicle bus; and represents maximum allowable σp. According to Wilwert et al. [4], with a

ecu1

hw
σ

max

p
σ

ecu1

faa
σ

Modeling and Analysis of a Step-By-Wire Subsystem
In this section, we expands on the timing model of a SBW subsystem that leverages our purposed ECUs to incor-
porate security and dependability. We use this timing model to compute the quality of service (QoS) and behavioral
reliability of the SBW subsystem.

A. Steer-by-Wire Operational Architecture

In an SBW subsystem, heavy mechanical steering column is substituted by electronic systems to reduce vehicle
weight. This eliminates the risk of steering column entering into the cockpit in the event of a crash. The SBW sub-
system provides the same functionalities as conventional steering column: front axle control (FAC) and hand-wheel
(HW) force feedback. The SBW architecture is depicted in Figure. 2. In this work, we focus on on the FAC part to
compute response time and error resilience of the FT approaches used in our proposed ECUs. Furthermore, the SBW
subsystem is made FT by using redundant ECUs, sensors, and actuators. Point-to-point links connect ECUs to sen-
sors and ECUs to actuators. For ECU-to-ECU connection, we experiment on all three commercial automotive buses:
CAN, CAN FD, and FlexRay. We evaluate and present a comparison of the SBW response time and error resilience
when using these three buses. The operation of our SBW subsystem is same as in [2], however, our SBW subsystem
leverages our proposed ECU architectures.

Figure 2: SBW architecture

Results
We have implemented the security and dependability primitives in Tez architecture and on NVIDIA’s RTX3090
GPU. The NVIDIA’s GEFORCE RTX3090 GPU has 10496 CUDA cores and runs at 1.70 GHz clock speed with
operating voltage 0.87. Tez has 32 cores runs at 300MHz with operating voltage 1.15V. The fault tolerant (FT)
cryptographic modules are coded in PyTorch.

Timing Analysis: In real-time automotive CPS, system response times must adhere to strict deadlines. Our evalua-
tions demonstrate that the execution times of our proposed ECU architectures are in the range of microseconds,
which conform to the real-time constraints of the SBW subsystem.

Table 1 shows execution time and energy consumption profile for processing one ECU message for NVIDIA GPU
GEFORCE RTX 3090 and Tez architectures. We evaluate our architectures with both NFT and FT operational
modes. The comparison between GPU and Tez reveals that FT Tez is 2X faster than FT GPU and NFT Tez 5.5x
faster than NFT GPU.

Energy Analysis: Energy efficiency is an important metric for automotive CPS as it implies greater fuel-efficiency for
combustion engine vehicles and longer battery lifer for hybrid and electric vehicles. All of Tez ECU architectures
are energy-efficient. Table I shows that the Tez yields better energy efficiency than the NVIDIA GPU. The NFT Tez
and the FT Tez consumes 2.75X and 1.34X less energy than the NFT GPU and the FT GPU, respectively. This is
because of the POSIT based energy efficiency of the Tez architecture and less execution time than that of the
GPU.

Conclusion
In this paper, we have evaluated GPU architecture and Tez based ECU architecture. The salient features are de-
pendability primitives while adhering to stringent real-time constraints of automotive CPS; the ability to perform
compute-intensive applications, such as cryptography and audio, video, graphics, and image processing, in an
energy-efficient manner; and the resistance of the ECU against fault injection and analysis attacks. Furthermore,
we have quantified and compared temporal performance, energy, and error resilience of GPU and Tez ECU archi-
tectures for a SBW case study over CAN, CAN FD, and FlexRay in-vehicle networks. Results reveal that Tez can
attain a speedup of 2X and 5.5X, respectively, while consuming 2.75X and 1.34X less energy, respectively, than
the contemporary ECU architectures.

43

 Copyright © 2021 VividSparks IT Solutions Pvt. Ltd.

max

p
σminimum tolerable QoS score of 11:13, the critical limit for pure delay is 35 ms, beyond which the vehicle

becomes unstable and risks the driver’s safety.

 and are calculated as the sum of execution time of application processor, execution time of co-processor,
Figure. 2). Since the co-processor is executing the computationally intensive cryptographic primitives, the execu-
tion time of the co-processor is far greater than the sum of bus times and execution time of application processor.
Therefore, we use the execution time of the co-processor as the and .

ecu1

faa
σ

ecu1

hw
σ

ecu1

hw
σ

ecu1

faa
σ

References
[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
and S. Savage. Experi-mental security analysis of a modern automobile. In IEEE Symposium on Security and Privacy,
pages 447–462, Berkeley, California, May 2010.

[2] A. Munir and F. Koushanfar. Design and performance analysis of secure and dependable cybercars: A steer-by-wire
case study. In IEEE Annual Consumer Communications Networking Conference CCNC, Las Vegas, Nevada, Jan 2016.

[3] K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller. Timing modeling and analysis for autosar-based software devel-
opment - a case study. In 2010 Design, Automation Test in Europe Conference Exhibition, pages 642–645, Dresden,
Germany, Mar 2010.

[4] C. Wilwert, Y. Song, F. Simonot-Lion, Loria-Trio, and T. Clement. Evaluating quality of service and behavioral reliabili-
ty of steer-by-wire systems. In IEEE ETFA, Lisbon, Portugal, Sep 2003.

Table 1: Performance and Energy results for GPU and Tez

 Copyright © 2021 VividSparks IT Solutions Pvt. Ltd.

5

In Vehicle Operational FT Time Energy FT Time Energy
mode mode mode (us) (uJ) mode (us) (uJ)

 NFT none 67.18 2.675 None 12.11 1.433

 FT FT-RMT 70.32 3.143 FT-RMT 34.81 2.187

Sender
Node

Receiver
Node

 NFT none 71.34 4.801 none 47.44 1.321

 FT FT-RMT 72.67 3.098 FT-RMT 36.23 2.459

NVIDIA
GPU Tez

